Un poquito de teoría
¡Hola chic@s!
Sé qué puede que estéis un poco nerviosos por el tema de funciones pero aquí os dejo unas pequeñas pistas y conceptos que debéis tener muy claro y os ayudarán con vuestro formulario:
- Una función es una relación de dependencia entre dos variables de modo que a cada valor de la primera le corresponde un único valor de la segunda, es decir, por cada valor que tengas en el eje x, un único valor del eje y.
- Al conjunto de valores que puede tomar la variable independiente se le llama dominio de la función (solo lo leemos en el eje x).
-Al conjunto de valores de la variable dependiente lo llamaremos recorrido de la función (solo miramos la función en el eje y).
-Una función es creciente si al aumentar la variable independiente (eje x) aumenta también la variable dependiente (eje y).
-Una función es constante cuando el valor de la variable dependiente es siempre el mismo, para cualquier valor de la variable independiente.
- Una función es decreciente si al aumentar la variable independiente disminuye la variable dependiente.
-Una función tiene un máximo relativo en un punto cuando en él toma un valor mayor que en todos los demás puntos próximos a él.
-Una función tiene un mínimo relativo es un punto cuando en él toma un valor menor que en todos los demás puntos próximos a él.
-Recordar, una función es continua cuando la dibujamos sin mover el bolígrafo del papel 😏
Pistas para cuando tenemos que dibujar una función
Una función es de primer grado o lineal cuando su gráfica es una línea recta o su fórmula es del tipo : y=mx+n
- m se llama pendiente de la recta porque su valor está relacionado con el grado de inclinación de la recta.
- n indica el punto donde la recta corta al eje OY, y se llama ordenada en el origen.
Si la pendiente es positiva, la función lineal es creciente; si la pendiente es negativa, la función lineal es decreciente.
La función polinómica de segundo grado o función cuadrática suelen tener un aspecto similar al de una parábola:
Las funciones del tipo y=k/x se llaman funciones de proporcionalidad inversa (k=un número cualquiera) y tienen las siguientes propiedades:
- Su gráfica es una curva que se denomina hipérbola.
- No está definida en el origen.
- Si k>0, la función es siempre decreciente.
- Si k<0, la función es siempre creciente.
Ejemplo:
Una función exponencial cualquiera del tipo y=a^x, con la única condición de que a sea un número positivo distinto de 1.
- Si a>1, la gráfica de y=a^x es:
La función es siempre creciente.
-Si a<1, la gráfica de y=a^x es:
La función es siempre decreciente.
Os lo dejo en pdf para que lo podáis descargar:
Una vez que hemos aprendido todo esto, vamos a ponerlo en práctica:
1.- Observa la gráfica de la función y responde:
1.1.- ¿Cuáles son su dominio de definición y su recorrido?
1.2.- ¿Tiene máximos y mínimo relativos? En caso afirmativo, ¿cuáles son?
1.3.- ¿Cuáles son los puntos de corte con los ejes?
1.4.- ¿En qué intervalos es la función creciente y en cuáles es decreciente?
¡SUERTE!👍






Muy interesante me ha servido para resolver mis dudas
ResponderEliminarTe ayuda a darte cuenta de tus errores y así saber corregirlos
ResponderEliminar